Author: wililupy

  • Using UFW to secure a server

    Using UFW to secure a server

    Hello Everyone! Hope you’re doing well!

    So for the last few weeks, I have been dealing with a DoS attack happening against me. After spending a couple days with Comcast Network Engineers we finally figured out that my mail server was being attacked. Once we disabled the NIC on the server, Internet service would start up immediately and everything appeared to be working properly. Looking at the auth logs, I noticed that port 80 and port 22 were getting bombarded by the DoS attacks.

    Since the Comcast gateway has a poor firewall, I looked in to getting an upgraded PAN to meet my demand, but unfortunatly, that was going to set me back about $4k, and I looked at Untangle, but ran into configuration issues with the Comcast Gateway and my static IP’s.

    So, until I save my pennies to get the upgraded PAN I had to use ufw to block my attacks.

    UFW, or Uncomplicated Firewall, is the default Firewall for Ubuntu. Since my mail server is running Ubuntu, I decided to use this. And it is fairly easy to setup and use.

    First thing I noticed when being attacked is that specific Chinese IP addresses were attacking the server on port 22 and port 80, which are the SSH port and the unencrypted default web server port. So these were going to be the first ones that I setup, however, one thing to note is that when you enabled ufw, it blocks all traffic, which is a good thing really, however, when you rely on email for your job, blocking it all is not good. so I needed to find out what external ports I needed to have open to the public so that it would still work, and which ones I could have just available internally so that I can still work on the servers if I need to.

    First thing I did was look at what ports my server was sharing outside. I did this with the netstat command:

    netstat -an | more

    This command outputs all the interfaces and ports that the server is listening and communicating on. This also tells you who is connected to what service if they have an open session, so this command is pretty important if you are wanting to get into security.

    To make it easy, I needed imap, pop, smtp, ssh, http, https, and ldap.

    I also needed to know what can be internal only and what needs to be exposed to the public so that my email server can still get email.

    Here is what I came up with:

    PortsVisibility
    22 (SSH)Internal
    25 (SMTP)public
    443 (HTTPS)public
    993 IMAPpublic
    465 (SMTPS)public
    587 (SMTP Submission)public
    80 (HTTP)Internal
    110 (POP3)Internal
    143 IMAPInternal
    389 (LDAP)Internal
    995 (IMAPS)Public

    So, now that I have the required information, I can create the rules. They are as simple as doing the following command:

    sudo ufw allow from x.x.x.x/24 to any port 22

    This rule allowed only my internal IPv4 network to connect to the server. I did this for all internal addresses. I also added the specific email external IP address with a /32 to specify only the server could talk to itself on the internal ports. Might have been overkill, but better safe than sorry. For my public rules I did the following command:

    sudo ufw allow from any to any port 443

    This will also create IPv6 rules as well.

    If you accidently create a rule and it isn’t working properly, you can remove the rule by first looking up its number:

    sudo ufw status numbered

    and then:

    sudo ufw delete [rule #]

    Once everything is done, enable the firewall so that the rules will be applied:

    sudo ufw enable

    If you every need to stop the firewall, you can disable it by sudo ufw disable and it will go back to being unsecured.
    I still had to reboot the server after creating the rules and enabling the firewall since sessions were still open but after the reboot, I haven’t had any more issues and email still works. You can look at the syslog to see all the blocks, which is somewhat fullfilling.

    If you have any questions, or if you have any comments, please leave them below!
    Thanks!

  • Setting up Unreal Tournament 2004 Game server on Ubuntu 16.04

    Hey everybody.

    Been a while since I wrote here. Figured I would write up a howto to setting up a Unreal Tournament 2004 server. I really love this game. It brings back tons of memories, playing this when I was in the Navy with my friends on the sub.

    My boys have some break time off from school, and they played a little bit back in the day, so I decided to spin up a server so that we could play. I looked for a way to do this online, and couldn’t find anything so I figured I would write something up, so here you go.

    So, the good thing is that because the game is pretty old now, over 13 years old now, it doesn’t really require a lot of CPU or memory or storage. I deployed a KVM with 2 cores and 4GB of RAM and 20GB storage server running Ubuntu 16.04.3, and got all the updates installed. I then spent the next few hours searching for the ut2004 dedicated server package. Never could find it. Luckily, I had a backup copy, which I have uploaded to this server so you can download it here. You’ll also need the patch, which you can download here.

    I created a directory for the game in /usr/local/games/UT2004 and extracted the .zip here:

    sudo unzip -d /usr/local/games/UT2004 dedicatedserver3339-bonuspack.zip

    Once that was complete, I then untarred the patch and had to manually install it, since it creates a directory called UT2004-Patch so I had to actually go into each directory and move the files into their respective directories in the UT2004 directory. Once that was complete, you now have a system capable of running Unreal Tournament 2004 server. However, I needed to do a couple more things.

    Next, you need to install libstdc++5 package. This is required so that Unreal can run. Run the following command to install libstdc++5:

    sudo apt install libstdc++5

    One, I decided to start the web admin. In the /usr/local/games/UT2004/System/UT2004.ini. Find the UWeb.Webserver section and modify it:

    [UWeb.WebServer]
    Applications[0]=xWebAdmin.UTServerAdmin
    ApplicationPaths[0]=/ServerAdmin
    Applications[1]=xWebAdmin.UTImageServer
    ApplicationPaths[1]=/images
    bEnabled=True
    ListenPort=80

    You can change the ListenPort to what ever you want, you just need to change bEnabled=False to True to enable it.

    Next, I decided that I wanted this to run as a service using SystemD instead of just running in the background with me logged in to the server. Below is my UT2004-Server.service file:

    [Unit]
    Description=Unreal 2004 Dedicated Server
    After=network.target
    
    [Service]
    Type=simple
    User=ut2004
    WorkingDirectory=/usr/local/games/UT2004/System
    ExecStart=/usr/local/games/UT2004/System/ucc-bin-linux-amd64 server CTF-BridgeOfFate?game=XGame.xCTFGame?AdminName=admin?AdminPassword=XXXXXXXX ini=UT2004.ini log=server.log -nohomedir
    Restart=on-abort

    Just change the ?AdminPassword= to what you want I then copied the file into /lib/systemd/system and chmod 644 and chown root:root the ut2004-server.service file and now I can control the service with systemctl:

    systemctl start ut2004-server.service and I can get status with systemctl status ut2004-server.service

    One last thing I did as well is I included my cdkey from my game since I was getting errors about a missing cdkey, however, I have tested it, and it is not required. The game will still run, you just can’t advertise your server on the Internet and host Internet games without it, which means your stats also won’t work. You used to be able to download a CD-Key from Epic, but that service is no longer working. I emailed them about this on December 2, 2017 with no reply as to date.

    Happy gaming!

  • Deploying Whitebox Switch ONIE images with MAAS

    Hello,

    So I spend a lot of time deploying switches in my lab for my job. I also really like Canonical’s tools for managing infrastructure and bare metal servers called MAAS, or Metal-As-A-Service. It can deploy servers better than really any other solution I have used in the past, including Red Hat’s Satellite, Microsoft’s Windows Deployment Services (WDS) and Solaris’s Jumpstart server. The  thing I particularly like is that it is OS agnostic. Meaning even though it is a Canonical product, it is not restricted to just Ubuntu. I can setup MAAS to deploy any, Operating system to my bare metal, as long as I have an image for it. So I can deploy Red Hat and Windows as well.

    So I was thinking, how hard would it be to make MAAS deploy ONIE images on Bare Metal Whitebox switches? The answer is, really easy. Since MAAS is using a Web backend based on Apache2, it has the default directory structure for Apache2. So in /var/www/html I can put my ONIE images for my switches in that location. Also, becuase MAAS is the DNS and DHCP server for my managed devices and servers, it is a no brainer on using this to deploy whitebox switches.

    Typically, when deploying ONIE images on to a Whitebox switch, Network Administrators have a couple options. They can either use a USB thumb drive with the ONIE image burnt on it and restore it via the ONIE Rescue option in the ONIE GRUB Boot menu and then typing install_url file:///path/to/onie-installerand then it install, but that is only efficient if you are deploying maybe 1-5 switches. As a Network Engineer, if I have to leave my seat to reset and update my switches, that is unsat. And if I’m carrying my “serial leash” over my shoulder, that is a walk of shame…

    The other option is to use the Network Boot option, which is the default way of deploying a NOS onto a Whitebox switch. This is the automatic option, but it does depend on a couple of things:

    1. The ONIE image is named specifically for the device, of example, a Celestica Redstone XP switch has the default ONIE installer image name of onie-installer-x86_64-cel_rxp_sxp-r0 and if it can’t find that specific image, it starts decrementing down to onie-installer-x86_64-cel_rxp_sxp to onie-installer-x86_64 until it can find an image. Then it checksums that image to make sure that it will work on the device based on the machine.conf.
    2. That the DHCP server is also the web server that is hosting the image. Now this is subjective, because you can have the default-url set in your DHCP server to point to the location of the ONIE images.

    As you can see, there a pros and cons to both deployments. Now to get why I like MAAS to do this.

    1. MAAS is a DHCP, DNS, and Web server all in one pretty package. I can plug my whitebox switch’s management port into the network that is managed by MAAS and set it up as a Device in MAAS so that I know what the IP address will be.
    2. I can put the ONIE image directly on MAAS in the /var/www/html directory and ONIE will automagically pick it up and install

    One thing to note, is that I cannot directly manage the switch from MAAS. Meaning that I cannot use MAAS to configure the NIC ports, and I cannot use MAAS to setup local users on the device or use MAAS to deploy an OS from the list of installed images on my MAAS server. Now there are plans that this functionality will come in the future, but it will not be based on ONIE images, and instead be PXE installed and managed by MAAS and specific images that are switch supported. This is outside of the scope of this blog entry, but as soon as they do become available, you can bet I will write a blog entry on how to do that.

    So, to get MAAS to deploy your whitebox switches, these are the steps:

    1. Copy your ONIE installer images to /var/www/html on the MAAS server.
    2. Under the Node tab, there is a Devices option at the top of the Web page, click that and enter the MAC address of the switch, as well as the name you want to give the device and the IP address if you don’t want to have a dynamic address assigned to the switch. I highly recommend that you set a static so that you don’t have to guess what the address is of your switch to manage it in the future.
    3. Power on (ie, plug in) the switch
    4. On the serial console of the switch, watch as the device comes online and starts ONIE, it will by default go into ONIE Install OS and start the install process
    5. When complete, the switch will reboot and the NOS will start up
    6. SSH into the switch via the static IP address that MAAS assigned to it
    7. You’re done.

    So now you can use MAAS to not only manage your servers, but it can deploy your NOS on to your Whitebox switches. You can also use this procedure for upgrading the NOS using ONIE on your Whitebox switches.

    DISCLAIMER: This is not supported by Canonical. If you try this and it doesn’t work, you cannot contact Canonical for support. They do not support ONIE or  the NOS’s that are deployed on the switches that are not running Ubuntu. This article is just showing that you can use MAAS to do this if you so wish to be able to have this and not have to have a separate server to deploy ONIE images from and have a one stop shop for your infrastructure deployments. While this should not impact MAAS functionality or deploying other services through MAAS, you are making changes to the directory structure that is not supported by Canonical.

    I wrote this article because I have had many Network Engineers and Admins ask if they could use MAAS to deploy ONIE images, which yes, you can, but Canonical will not support it since it is not a Canonical supported deployment method.

    If you have any questions, or just want to say “Great article” leave a comment!

    Thanks!

  • SwitchDev in Ubuntu Zesty

    Hello everyone!

    Been a little while since I posted a blog entry. I’m at the OpenStack summit in Boston this week, and I am doing a demo of Mellanox’s SwitchDev running on Ubuntu 17.04, Zesty Zapus.

    By default, we at Ubuntu enable SwitchDev in the Kernel. Also, because Zesty is running the latest stable kernel (4.10) and has the latest updated SystemD, SwitchDev runs out of the box. No need to configure or apply any patches, it just works.

    I am demoing in the Mellanox booth at OpenStack Summit Ubuntu, running on a Mellanox SN2100 switch, with SwitchDev enabled. This demo also shows that because it is running Standard Ubuntu Server, you can install other Canonical technologies on it, such as Metal-as-a-Service (MAAS) and Juju. The Demo is running MAAS on the switch, and it is managing 10 servers running in an Ubuntu Orange Box and with Juju, we are deploying OpenStack on to the servers in the Orange Box.

    You can view the Demo by clicking here.

    Let me know in the comments what you think. There is no audio.

  • Converting and Resizing KVM Hard Drives

    Hello everyone! I have been rebuilding my network and servers due to a major outage that I had with my ISP, which we are still meddling with. However, during the outage, I had to rebuild my servers. So I lost a lot of my build machines. Luckily, I still had copies running on my Mac running VMware Fusion. However, I don’t run on there so my machines just sit powered down, but if I need to bring them up for anything, I can.

    Well, I have a build machine that was running out there before I brought it into my KVM environment, but it was out of hard drive space and under utilized. This blog post is going to show how I moved the hard drive to my kvm server and then how I resized it and got it up and running.

    First thing I did was scp the vmdk file from my Mac to my KVM server:

    scp ~/Documents/Virtual\ Machines.localized/Precise-build.vmwarevm/Virtual\ Disk.vmdk kvm2:/data/VMS/precise-build.vmdk

    After 40 minutes, the vmdk was copied. I then converted it to qcow2:

    qemu-img convert -O qcow2 precise-build.vmdk precise-build.qcow2

    After that finished, I was able to get info on it:

    qemu-img info precise-build.qcow2
    image: precise-build.qcow2
    file format: qcow2
    virtual size: 80G (85899345920 bytes)
    disk size: 73G
    cluster_size: 65536
    Format specific information:
        compat: 1.1
        lazy refcounts: false
        refcount bits: 16
        corrupt: false

    I wanted to grow it to 200GB in size:

    qemu-img resize precise-build.qcow2 +120G

    I then got info on it to verify that it grew:

    qemu-image info precise-build.qcow2
    image: precise-build.qcow2
    file format: qcow2
    virtual size: 200G (214748364800 bytes)
    disk size: 75G
    cluster_size: 65536
    Format specific information:
        compat: 1.1
        lazy refcounts: false
        refcount bits: 16
        corrupt: false

    I was now ready to build the VM, which I used Virtual-Manager to build. I told it to use an existing disk, and then set it up to use more memory and processors then previously so I could get better performance out of it. I then told it to boot from a CD image of Parted-Magic so I could grow the file system. Luckily, this server only had two partitions, the root partition at the swap partition. However, the swap was on an extended partition and at the end of the disk. So I had to delete it and the extended partition so I could used parted to extend the file system. I extended it to the end minus 6GB, and then created at extended partition at the end and added a swap partition back and then saved it and rebooted. The machine rebooted, ran fsck and started up normally.

    I was then able to delete the vmdk file from my server to reclaim the 73GB of space it was using:

    rm /data/VMS/precise-build.vmdk

    Thats it. I hope this guide helps you migrating VM’s and growing their file systems from VMware or even Virtual Box to KVM.

    Let me know in the comments.

    Thanks!

  • Install Ubuntu-Touch on BQ Aquaris M10 FHD

    Hello everyone! This blog entry is mostly for those of you that want to play with Ubuntu-Touch on the BQ Aquaris M10. You can actually purchase this tablet from BQ directly, but they have been sold out for a while, and I really wanted to have one.

    So, I bought the Android version, which isn’t too different in specs. However, it comes running Android Marshmallow. I played around with it for a day just because I haven’t played with Android in a while, and realized a lot has changed since Froyo, which was the last version I played with. After the nostalgia ran off, I decided to start trying to install Ubuntu on my device.

    First thing I did was go to Installing Ubuntu on Devices website. I found all the details of setting up my build machine to handle this.

    First thing I did was install the ppa for the Ubuntu SDK and for the phablet-tools package.

    sudo add-apt-repository ppa:ubuntu-sdk-team/ppa

    Then run sudo apt update to get my repo locations updated to use the ppa.

    It than install the ubuntu-device-flash which is what does all the heavy lifting and getting the image on the device. I also install adb, which is Android Debug Bridge application which is needed to manage the device and get access to the internal bits of the device, and fastboot which manages the device when its in the bootloader.

    sudo apt install ubuntu-device-flash phablet-tools

    After I had all the required tools on my laptop, I was ready to start. First thing I did was I had to put my M10 into Developer Mode. To do this, Click on System and go to About. Click the Build seven times. It will start a countdown on the screen saying “Press x time to enable Developer Mode.” Once done, go back and you will see Developer Options on the screen next to About. Select it and enabled OEM Unlock Bootloader, which it will bring up a prompt asking if you are sure since this does void the warranty, and it warms you every time you reboot the device saying it is in Orange State and can’t be protected and delays the boot by five seconds. Select Yes and then Enable USB Debug and turn off Protect ADB APK uploads. Probably isn’t necessary, but I did it anyways.

    Now, plug your USB cable into your laptop and your device, You will get a prompt on the tablet asking if you trust this device, click the check to always trust and say Yes. You can now use the adb command on the laptop to control the tablet.

    First, check that your laptop sees everything:

    adb devices

    You should get a return of the M10’s serial number and the word device next to it. We are now ready to go into the Bootloader. Do this from adb:

    adb reboot bootloader

    The device will reboot, give you the warning that I mentioned above about being Unlocked and unprotected, and then a blank screen with Fastboot Loader on the bottom. This is the fastboot bootloader. We now have to unlock the device:

    Make sure you can communicate with the device with fastboot:

    fastboot devices

    You should get a return of the M10’s serial Number and fastboot on the same line.

    You unlock the device by typing:

    fastboot oem unlock

    You will get a prompt on the device saying Press Volume + to Unlock and Volume – to cancel. Press Volume + on the device and you will get a confirmation saying device unlocked and on your Laptop it will say OKAY and exit. Now we can reboot the device again.

    fastboot reboot

    Now, it will start back up in Android, after about 10 minutes. You will have to reconfigure the device, basically I skip everything until I can get to the point where I can turn the device off. I turn it off and then I turn it back on, but when I press the power button, I also hold down the Volume + button at the same time. This will cause the M10 to go into Recovery Mode. Once The Screen comes up saying Powered by Android and you get the Unlocked Warning again, you can release the power button, but keep pressing the Volume + button until you get the Fastboot screen. Verify you can communicate to the device:

    fastboot devices

    You should get the serial number and fastboot on the same line. Now we can install Ubuntu….kind of.

    First, you need to download the recovery image from Ubuntu since the built in one on the device does not allow adb. Depending if you have the M10 FHD or just the M10, you need a specific image. Since I was using the FHD, I need the frieza image. You can download them by clicking the appropriate link from this page.

    Run the following to start the process:

    ubuntu-device-flash -v touch \
    --channel=ubuntu-touch/stable/bq-aquaris-pd.en \
    --device=frieza --bootstrap \
    --recovery-image=recovery-frieza.img

    It will download and start copying all the required files for the device. Unfortunately, it will fail. The Android partition layout is way to small for Ubuntu recovery. So, after it fails, you can wipe the cache from the device. Next, you will use adb to manage the partitions.

    First, you need to download parted for Android. Luckly, I have a version here you can use. Download this and untar it and then move it to the /sbin directory on your device:

    tar xf parted-android-32.tgz
    adb push parted /sbin
    adb shell chmod +x /sbin/parted

    Now we are ready to do some “damage” to the device.

    NOTE: Word of caution here. We are going to delete and grow 3 file systems on the device. Please follow these directions closely and watch out for typos. You don’t want that otherwise we have to start all over again.

    First, run adb shell. You are now on the console of the device as root. If you run df -h you’ll notice that /cache is out of space, and it’s only a little over 400MB in size. No where near the size we need since we have a little over 870MB of files we need to upload before we can install Ubuntu. The other thing you’ll notice once we get into the partitioning, is that the /system directory is only 1.5GB in size, and Ubuntu needs at least 4GB for the installation. However, the userdata partition is 15GB in size, so we are going to steal from there to repurpose to these other partitions.

    First thing to do is run parted /dev/block/mmcblk0

    Type p to list the partitions, there are 24 partitions. We are only concerned with 21, 22, and 23. First change the unit to bytes, unit b and then run p again to get that readout:

    p
    Model: MMC 016G70 (sd/mmc)
    Disk /dev/block/mmcblk0: 15758000128B
    Sector size (logical/physical): 512B/512B
    Partition Table: gpt
    
    Number Start End Size File system Name Flags
    1 524288B 3670015B 3145728B proinfo
    2 3670016B 8912895B 5242880B nvram
    3 8912896B 19398655B 10485760B protect1
    4 19398656B 29884415B 10485760B protect2
    5 29884416B 80216063B 50331648B persist
    6 80216064B 80478207B 262144B seccfg
    7 80478208B 80871423B 393216B lk
    8 80871424B 97648639B 16777216B boot
    9 97648640B 114425855B 16777216B recovery
    10 114425856B 120717311B 6291456B secro
    11 120717312B 121241599B 524288B para
    12 121241600B 129630207B 8388608B logo
    13 129630208B 140115967B 10485760B expdb
    14 140115968B 141164543B 1048576B frp
    15 141164544B 146407423B 5242880B tee1
    16 146407424B 151650303B 5242880B tee2
    17 151650304B 153747455B 2097152B kb
    18 153747456B 155844607B 2097152B dkb
    19 155844608B 189399039B 33554432B metadata
    20 189399040B 201326591B 11927552B custram
    21 201326592B 1811939327B 1610612736B ext4 system
    22 1811939328B 2256535551B 444596224B ext4 cache
    23 2256535552B 15616966655B 13360431104B userdata
    24 15616966656B 15757983231B 141016576B flashinfo
    

    Note the start and ends for the partitions 20 and 24. Partition 21 will start with 201326592 which is +1 from the end of the previous partition. We need to do this for each partition we are growing so that they are uniform and not overlapping and cause problems.

    First we need to delete the three partitions:

    rm 21
    rm 22
    rm 23

    Now we are ready to recreate them, only larger in size. Since we are using bytes, the numbers are quite large, and need to equal logical sizes. Basically, do the math of starting byte, add the amount of more space you want, make that the end byte, then the next partition starts on the +1 of the last end byte until you get to partition 23, which you will end -1 byte of where partition 24 starts. So partition 23 will end with 15616966655. If you use the values that I did, you will end up with a system partition of 4.3GB, cache of 1.07GB, and a userdata of 9.6GB:

    mkpart primary 201326592 4496294399
    mkpart primary 4496294400 5570036224
    mkpart primary 5570036736 15616966655
    name 21 system
    name 22 cache
    name 23 userdata
    quit

    We now need to format the volumes:

    mke2fs -t ext4 /dev/block/mmcblk0p21
    mke2fs -t ext4 /dev/block/mmcblk0p22
    mke2fs -t ext4 /dev/block/mmcblk0p23

    Now, on the device, use the Volume – to select reboot into bootloader and press the Power button to select it. The device will reboot and you will be brought back to the screen where it just says FASTBOOT on the bottom.

    Now we can start the flash again, and this time it will work:

    ubuntu-device-flash -v touch \
    --channel=ubuntu-touch/stable/bq-aquaris-pd.en \
    --device=frieza --bootloader \
    --recovery-image=~/frieza-recovery.img

    Once the installation is done, you will have Ubuntu running on your device. It takes about 10 minutes to install, but after the reboot, the initial splash screen will have the BQ logo but say powered by Ubuntu and you won’t have the annoying Unlocked Device unprotected alert any more.

    Let me know in the comments if you have any issues! Happy Hacking!

  • Quake3 Arena Dedicated Server on Ubuntu 16.04

    Hello everyone!!

    So I decided to blog this since I haven’t seen this documented anywhere else. All other HowTo’s explaining how to do this are so outdated that it pretty much would make your server obsolete. So I decided to write this blog post for anyone out there that wants to run this really old, but still really cool game as a dedicated server.

    The reason this came about is my boys today wanted to play online games with me, specifically on my XBOX One. I wanted to re-live my glory days when I was my oldest age and have a LAN party.  Like you, they were wondering what that was. Let me enlighten you. Back in the early to mid 90’s, before broadband Internet, if you wanted to play online games, it required either a dialup connection directly to your friend, or a massive network on a college campus with someone hosting the game and maintaining it. Neither worked in my small town I grew up in. So I would host LAN parties at my house. This meant, on Friday night, me and my friends would hang out at my house and play video games. We did this because on a typical Friday night, the girls of our town were too intimidated by our big….brains that they didn’t want anything to do with us. The Jocks were also just as intimidated so to prevent bloodshed, mostly ours, we played video games. We would all gather at my house, jam out and do a mini concert, and then hook all our machines up and play Doom or Quake or Duke Nukem 3D.

    My boys thought this was a great idea so we decided to do it at my house. I was on my Mac, running Windows 10 in bootcamp, and my boys were running Ubuntu 16.04. I installed Quake 3 Arena on all the systems because my boys absolutely LOVE this game. Unfortunately it’s only on Steam on Windows, so I had to download it there and then copy all the files to my Ubuntu machines, but that was simple enough. I also installed it on my boys computers by going to the Ubuntu Store on their machines, searching for Quake 3 and installing it. I then copied all the pk3 files to them and we were good to go and start playing. And it was epic!! It was like all of us were 13 and playing. We were all hopped up on pizza, beer (me) and Mountain Dew (or as my son’s call it, “gaming fuel.”)

    After we finished, I started to think, I used to host this game about 8 years ago on Hardy (Ubuntu 8.04), so I figured I would try it again. I looked online to see if there was an easy “HowTo” on this, and all of them were dated and a pain since you needed files from id Software, and it just sucked. So, here we go, the way I did it, super simple and easy to follow.

    First thing I did, installed Ubuntu 16.04 on a Virtual Machine. Update, patch, ready to go.  After that, I installed quake3-server package from Ubuntu Xenial Universe.

    sudo apt install quake3-server

    When you install it, it will ask if you want to install the Quake 3 files. Say no. We’ll get to that in a few seconds. After that, I copied all my pk3 files from my commercial version of Quake 3. They were located on my Windows computer at <path where steam is installed>/steamapps/common/Quake 3 Arena/baseq3/

    I copied all these files to my Linux laptop so that I could use them to play Quake 3 there. I put them in the first search path that the executable looks:

    /usr/share/games/quake3/baseq3

    This directory doesn’t exist, so I had to create it:

    sudo mkdir -p /usr/share/games/quake3/baseq3

    I then moved the files there:

    sudo mv ~/*.pk3 /usr/share/games/quake3/baseq3/

    Once this is complete, restart the Quake 3 server:

    sudo systemctl restart quake3-server

    Now, we need to extract some config files for the server. There are sample configurations for all the game modes that you can modify for your needs in the pak0.pk3 file.

    sudo apt install unzip
    sudo unzip /usr/share/games/quake3/baseq3/pak0.pk3 ctf.config ffa.config teamplay.config tourney.config gamecycle.config
    sudo mv /usr/share/games/quake3/baseq3/*.config /var/games/quake3-server/server.q3a/baseq3/
    

    Now you need to modify those configs to match what you want. You can get details from doing a simple Google Search on Quake 3 Arena Dedicated Server parameters.

    Once you have everything set, all you need to do is change the main configuration of the system located in /etc/quake3-server/server.cfg.

    sudo vi /etc/quake3-server/server.cfg

    You can either set one of the configs you extracted here, or what I recommend is modifying the line with “exec ffa.config” and change it to the config you want. Save the file and then restart the service:

    sudo systemctl restart quake3-server

    Now you can connect to your server and you’re done.

    Hope this helps any of you out there. Please leave a comment if it helps or if you have any questions.

     

  • Livepatching the Kernel in Ubuntu 16.04 LTS

    Hello everyone and Happy New Year! I hope 2017 has started great for everyone out there.

    So I have been playing around with Canonical’s Livepatch service on my Ubuntu 16.04 servers and I have to say, it is pretty slick. I run two KVM hosts that run various servers and containers so that I can do my job. In fact, this web server runs as a KVM on one of my hosts. Since I can’t typically run kernel updates and reboot when ever I feel like since I have other work loads running on these servers, Canonical Livepatch answers this problem for me.

    How it works is pretty simple. When a security patch for the Kernel comes out, this service downloads the patch and installs it in the running kernel on my system WITHOUT HAVING TO REBOOT MY SERVER!!! That is amazing!! I get the security update to patch and make my system secure and I don’t have to schedule a maintenance window and bring down 20+ VM’s and 100+ containers, I can just update the host and BAM! All my containers and my hosts are updated, no reboot, no downtime. I still have to touch all my KVM’s, but that is the way when you run VM’s.

    So you want to try this out? It’s pretty simple to setup. First, it only works on Ubuntu 16.04 LTS. This “should” change to be available in 14.04 but as of when I wrote this, it was still not yet available on 14.04.

    The Kernel Livepatch is a snap application, making use of snaps on the system. This makes it even easier to install and update. To install on your system, it is as simple as:

    sudo snap install canonical-livepatch

    This will pull down the snap application and install and start it. Now, you have to enable the service. You need to go to https://auth.livepatch.canonical.com to sign up for the service. Regular Ubuntu users are authorized up to 3 machines to get Livepatches for. If you need more, you can purchase them via support for your systems. Once you are signed up, you will have a token that you use to add your systems.

    You then run:

    sudo canonical-livepatch enable <TOKEN>

    This will setup livepatch. To see it work, simply run

    canonical-livepatch status --verbose

    and you will get the following output:

    client-version: "6"
    machine-id: --REMOVED--
    machine-token: --REMOVED--
    architecture: x86_64
    cpu-model: Intel(R) Xeon(R) CPU           E5645  @ 2.40GHz
    last-check: 2017-01-11T15:21:36.477627539-08:00
    boot-time: 2016-11-28T09:16:56-08:00
    uptime: 1062h5m33s
    status:
    - kernel: 4.4.0-47.68-generic
      running: true
      livepatch:
        checkState: checked
        patchState: applied
        version: "15.1"
        fixes: |-
          * CVE-2016-7425
          * CVE-2016-8655
          * CVE-2016-8658

    I have those CVE’s installed, and I didn’t have to reboot my system for them to be implemented.  Now my KVM host is patched, and I had 0 downtime to do it.

    There you have it. Let me know in the comments if you have any questions!

     

  • Deploying SwitchDev with MAAS

    Hello! So in this post, I’m going to show how to deploy a Mellanox switch with the latest firmware installed using Canonical’s Metal-As-A-Service, or MAAS. It’s actually pretty easy since with the latest release, 16.10, it has SwitchDev already enabled. There are just a few little things you need to do to make this deployment a much easier thing.

    The point of this article is so that you can install your Mellanox switch, connect it to your MAAS managed network, and deploy the switch and it will be ready to go.

    First thing you need to do is on the MAAS server, add a tag. This tag will make use of the “kernel_opts” meta tag so that we can use the console on the device. By default, MAAS wants to use tty and ttyS0, which is fine most of the time, but because Mellanox uses Console redirection, we have to include the baud rate and other settings otherwise we get no displayed output. This is easy enough. Log in to your MAAS server, and login to the MAAS CLI.

    NOTE: I like to export my API Key in my home directory so I don’t have to type it. I’ve seen some people make it an env variable so that they can just call it with a $APIKEY variable, either way, you can do this with the following command to make it easier to login:

    sudo maas apikey --username $USER > maas.apikey

    Now, you can login to the MAAS CLI:

    maas login default http://maas/MAAS `cat ~/maas.apikey`

    Now you can create the tag for the switch’s console:

    maas default tags create name='serial_console' comment='115200 serial console' kernel_opts='console=ttyS0,115200n8'

    You can add as many other tags and kernel_opts as necessary for each different switch you want to have managed by MAAS.

    Next, we have to download Ubuntu Yakkety Yak into MAAS if you don’t already have it. To do this, go to the Images tab in the MAAS WebUI, check the 16.10 checkbox and click Save Selection. After a few moments MAAS will download the image and you’ll be able to use it to deploy systems with. After you save selection, you can move on to the next step since by the time you’re done with it, MAAS will have downloaded the image and you’ll be ready to deploy.

    Now, you are ready to have the switch be provisioned by MAAS. Plug in the switch to a managed power supply that MAAS can manage. I use DLI’s PDU in my home lab with great success. Just make sure it is configured properly so that MAAS can use it. If you have any questions about this, leave it in the comments and I’ll reply back.

    Login to the PDU’s web interface and turn on the switch. Make sure you have the console cable connected to either a laptop or a serial concentrator that you can access to watch the device come up. You have to get into the BIOS to change the boot order. By default the Mellanox switch boots to the installed hard drive since it comes with ONIE pre-loaded on it. This will cause the system to never boot via PXE, which is what MAAS needs for it to work. When you get the AMI BIOS screen press CTRL-B, there is no prompt, you just press it and it will take you into the BIOS. Under the Boot tab, move the P0:InnoDisk to the third option and make sure that the Intel GB NIC’s are first and second. Then Save and Exit the BIOS and it will reboot the switch. You will get two PXE BIOS boot messages, one for each NIC, then the BIOS display again, then you get the familiar PXE Boot process. The device will hit MAAS and start the Provisioning. You will get no display on your console, but when it is finished, you will hear the fans over speed and get a red Fault indication on the device. Since MAAS tries to power down the device with the shutdown command, and there is no power off with a switch, it goes into a faulted state. From the PDU interface, shutdown the switch. Go to MAAS and you will see your device there in a NEW status. You need to adjust the power for it, so click on it in the MAAS WebUI and scroll down to Power. Put in the Power information for the device.

    NOTE: If you are using the DLI PDU, you will get no power indication. This is by design. For power status, you will have to look at the PDU web interface or look at the switch and verify it is on.

    Once you have the power setup for the switch, Click on Edit for the tags selection and put in serial_console (It should auto-populate as you type it) and click save. Now you are ready to commission the switch. From the Task pull down, select Commission. The switch will power up and start to boot up. NOTE: You may want to watch this since sometimes I have seen it change the boot order back to hard drive after the faulted state. If it does, just go back into the BIOS and change the boot order back to PXE. After you commission the device, this seems to not happen anymore.

    After commissioning, You will have a Ready state in MAAS. You are now ready to deploy the switch. Click on the switch, and select Deploy from the Task pulldown. You will be given the option of what Operating System and version to install on the device. Select Yakkety Yak and click Deploy. You can watch the device come up, install and deploy. After the reboot, you will have a deployed switch. You can login to the device via SSH with the ubuntu@device-name. I highly recommend adding a local user account with password on the device so that you have a way to get into the device locally if your management network ever goes down and you need to configure the device.

    The last thing you have to do is add udev rules so that the front panel gets the correct names for the device. This is just like with the switchdev in Ubuntu-Core on the switch. First you need the get the switchid. To do that run the following command:

    ip link show dev eth0 | awk '{print $9}'

    The output is the switch id. Note that since you will need it for the udev rule. Now we need to create it. To do that, login to the switch and run:

    sudo vi /etc/udev/rules.d/10_custom.rules

    and enter the following

    SUBSYSTEM=="net", ACTION=="add", ATTR{phys_switch_id}=="<switch-id>", ATTR{phys_port_name}!="", NAME="sw1$attr{phys_port_name}"

    <switch-id> is the value you got from the previous command/step.

    Reboot the switch and verify that the interfaces are named properly:

    ip link show dev sw1p1

    You should get the following:

    34: sw1p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop switchid 7cfe90f02dc0 state DOWN mode DEFAULT group default qlen 1000
    link/ether 7c:fe:90:f0:2d:fd brd ff:ff:ff:ff:ff:ff

    At this point you are ready to setup your device as you see fit using standard Linux commands.

    Please let me know if the comments if you have any questions.

    Thanks!

     

  • MAAS 2.0 and DNS

    Hello everyone! Been a while since I wrote a blog entry. I updated my network topology last night to accommodate for guest access and to separate my personal network from my work network to keep my video game consoles and my cell phones off of my external facing network and firewall them up better for more security. I decided during this time as well to revisit my DNS and Virtual Host machines.

    I was running ESXi 6 on one of my hosts that ran Ubuntu VM’s for this site, and my email server, and a couple other servers that I use to do my job. It became a hassle to keep it up and running on older hardware so I upgraded it to KVM and Ubuntu 16.04 and I decided that I would also upgrade my VM’s from 14.04 LTS to 16.04 LTS since I had the downtime.

    Anyways, I decided that I was going to use MAAS, or Canonical’s Metal-As-A-Service to provision my KVM’s and also get rid of my aging DHCP/DNS server that was running 12.04 and just move everything to MAAS. Sounds easy enough? Not so much.

    Building the KVM host was easy. I installed Ubuntu 16.04, selected OpenSSH server and Virtual Machine Host from the TaskSel and then after it was installed, ran sudo apt update && sudo apt upgrade, rebooted, and then ran sudo apt install ovmf qemu and modified my /etc/libvirt/qemu.conf to point to where ovmf was (basically just removed the comments from the file for those settings) and than ran systemctl restart libvirt-bin and was ready to go. I also modified my NIC interfaces to bridges.

    Now I was ready to build my MAAS server. I build a KVM with 2GB of RAM and 2 processors and 60GB of storage and added 2 NIC’s, one for each of my networks, one for my servers and external network, and one for my internal guest network. I installed a clean 16.04 LTS server, added OpenSSH and configured the interfaces for static addresses and ran update/upgrade and now was ready to install MAAS. I ran sudo apt install maas and was off and running. After it was complete, I ran sudo maas createadmin to create the admin account. I then logged in to maas by opening Firefox and browsing to my maas servers IP address and logging in. I click on my account in the upper right corner and went to Account, and copied my API key to a file called maas.key in my home directory on MAAS so that when I need to use the CLI, I can just cat maas.key instead of having to type the whole damn thing in. I then copied all my SSH keys to my account so that I can access my new nodes with my SSH key, and I then went to the Images tab to make sure it was downloading the 16.04 image, and did some minor settings to make sure it seen all my networks and put in my DNS forwarders.

    Next, it was time to setup DHCP. I clicked on the Network tab and clicked on the subnet I wanted to have DHCP. I set a dynamic reservation for my internal network starting at .50 and going to .200. I then clicked my other subnet and did the same thing there. I then went back to the Network tab and clicked the VLAN for each of my fabrics. Under the Take Action button, I configured DHCP for this network and was ready to go.

    I built my webserver as a KVM, and told it to PXE boot and attach it to the server network bridge on my KVM host. I powered it up and boom! MAAS found it, and enlisted the node. I changed its name, but realized it was not using my DNS name, but instead the MAAS default of “maas.” According to Canonical’s documentation on MAAS, you can change this from the WebUI. That would be helpful to tell a user how, but I’m not going to go there. In 1.9, it was as easy as clicking the domain name on the Nodes tab, but in 2.0, not so much. I ended up changing it from the MAAS CLI by ssh’ing into my MAAS server and running the following command to login:

    maas login maas http://maas/MAAS `cat ~/maas.key`

    I then ran maas maas domain update name=lucaswilliams.net and verified that it was updated with maas maas domains read and in the MAAS WebUI, it updated it as well.

    I then clicked on my new node, and commissioned it. After 10 minutes, it was commissioned and ready for deployment. I deployed, which I have to say, is a huge improvement over 1.9. In the node tab, under Interfaces, I could statically set my IP address, which I did, and then I clicked deploy, and from the pull down said 16.04 and it was off. About 20 minutes go by, and it’s done. Now, I ssh into my new server and I can login with my SSH keys from my various workstations and it works. I then go through the process of installing LAMP on the server and getting WordPress configured and recovering my site from my backup. Then I notice that I don’t have my CNAME records to access my server via www or wordpress. I go into research mode. How do I add CNAME’s to MAAS 2.0 DNS? Great news, according to Canonical’s maas.io site, you can do this, but once again, they don’t tell you how. After spending hours doing Google-Fu and on freenode asking around, to no avail, I decided “Whats the worse that can happen?” I start poking through the MAAS source on the dnsresource flags and relize that there is an option in the MAAS CLI for dnsresource-records. I look into that and low and behold, it tells you there I can create A, AAA, CNAME, MX, SRV, NS and TXT records. So, through about 2 hours of trial and error, I finally figured it out:

    maas maas dnsresource-records create fqdn=www.lucaswilliams.net rrtype=cname rrdata=webserver

    It shown the record in the DNS tab in MAAS as well. I was able to ping the new CNAME and it responded properly. You are able to see this page as a result of it working as well.

    I did the exact same above steps for my mail server as well, however, I had to create a MX record for it since it was failing its install step doing an MX record lookup. Great, how do I do that? Luckily, after only an hour of trial and error, I figured it out:

    maas maas dnsresource-records create fqdn=lucaswilliams.net rrtype=mx rrdata='10 mail.lucaswilliams.net'

    It updated in the DNS tab in MAAS and I could see all of these with the MAAS CLI. I was also able to add static servers that were not commissioned by MAAS into DNS via the CLI with the following command:

    maas maas dnsresources create fqdn=hostname.lucaswilliams.net ip_addresses=ip.add.re.ss

    Anything that is DHCP assigned will populate DNS automagically.

    And there you have it, a way to add MX and CNAME records so that you don’t have to do the research, or if you Google search it, hopefully you fall here.

    Let me know in the comments if this helps you or not, and let me know what else you want to know about.